Self-optimizing Control of Cooling Tower for Efficient Operation of Chilled Water Systems
نویسندگان
چکیده
The chilled-water systems, mainly consisting of electric chillers and cooling towers, are crucial for the ventilating and air conditioning systems in commercial buildings. Energy efficient operation of such systems is thus important for the energy saving of commercial buildings. This paper presents an extremum seeking control (ESC) scheme for energy efficient operation of the chilled-water system, and presents a Modelica based dynamic simulation model for demonstrating the effectiveness of the proposed control strategy. The simulated plant consists of a water-cooled screw chiller and a mechanical-draft counter-flow wet cooling tower. The ESC scheme takes the total power consumption of the chiller compressor and the tower fan as feedback, and uses the fan speed setting as the control input. The inner-loop controllers for the chiller operation include two proportional-integral (PI) control loops for regulating the evaporator superheat and the chilled water temperature. Simulation was conducted on the dynamic simulation model of the whole plant including the screw chiller and the cooling tower for different scenarios. The simulation results demonstrated the effectiveness of the proposed ESC strategy in searching for the optimal tower fan speed set-point under tested circumstances, and the potential for energy saving is also evaluated.
منابع مشابه
Integrated Chiller System Reduce Building Operation and Maintenance Costs in Cold Climates
Although water-cooled chillers are more energy efficient than air-cooled chillers, a majority of chilled water systems use air-cooled chillers. In cold weather climates, air-cooled chillers are capable of functioning in low ambient temperatures with few operational concerns, where as water-cooled chiller systems must be equipped to prevent cooling tower freezing. The integrated chiller system a...
متن کاملDesign and operation optimization of an air conditioning system through simulation: an hour-by-hour simulation study
In the present research, performance validation of a Heating, Ventilation, and Air Conditioning (HVAC) system operating in a library building was conducted. The operating HVAC system was studied in terms of the provided indoor air conditions and energy consumption level. The fieldwork measurements showed that the HVAC system is not capable of providing the desired indoor air conditions based on...
متن کاملModeling and Optimization of a Cooling Tower-Assisted Heat Pump System
To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP) system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is ...
متن کاملEffect of Wind on Thermal Performance of Heller Dry Cooling Tower
In a steam power plant, the temperature of the cooling water leaving the condenser for recyclingshould decrease. This is achieved in a cooling tower. The Heller cooling tower does not require waterfor operation, thus, it is a suitable system for use in thermal power plants throughout Iran. Wind is anenvironmental factor that unfavorably affects the performance of a cooling tower. Previous studi...
متن کاملA Comprehensive Approach to an Optimum Design and Simulation Model of a Mechanical Draft Wet Cooling Tower
The present paper describes the designing of a thermally and economically optimum mechanical draft counter-flow wet cooling tower. The design model allows the use of a variety of packing materials in the cooling tower toward optimizing heat transfer. Once the optimum packing type is chosen, a compact cooling tower with low fan power consumption is modelled within the known design variables....
متن کامل